Convergence in Measure and the LI Spaces

The problems below are taken out of various textbooks on real variables, including
“Real Analysis” by Elias M. Stein and Rami Shakarchi and “Real Analysis” by N. L.
Carothers. Questions are also taken from real variables qualifying exams at CUNY
Graduate Center. The problems are color-coded. The color green indicates that the
problem came from a textbook and to the best of my knowledge was not featured on
any qualifying exam. Yellow means that the problem was spotted in at least one
qualifying exam. BB indicates that the problem or one just like it appeared in at least
two qualifying exams.

L. Show that m{|f-g| =€} <m{|f-h| =€¢/2} + m{|h - g| = €/2}. Thus, the
expression m{ |f - g| = €} behaves rather like a metric.

2! Prove that limits in measure are unique up to equality a.e. That is, if { f, }
converges in measure to both fand g, then f= g a.e.

3.If f,——f and g,——g,provethat f, +g, —> f+g.

4.1f f —— f and g, —— g, does it follow that f,g, —— fg ? If not, what
additional hypotheses are needed?

9. True or false? If f, —— f,then| f, | ——1fI.

6! Prove or give a counterexample. If the statement is false, what corrections are
needed to make it true?

(a) If f, — f almost uniformly (a.u.), then f, —— f.
b) If f, > fau.then f, — f ae.

c) If f, — f pointwise a.e, then f, —— f.

e) If fn%]f,then f,——r.

(
(
(d)If f,——f,then f, — f pointwise a.e.
(
(f) If f,—"f, then f,—L—f.

7. Prove the Riesz-Fisher Theorem for Cauchy sequences in measure. Namely, show

m

that if { f, } is Cauchy in measure, then there is some function f such that f, —— f .

Moreover, { f,} contains a subsequence { f,,, }, which converges to f pointwise a.e.



8. Prove that Fatou’s lemma holds for convergence in measure: If { f, } is a sequence

of nonnegative measurable functions and f, —— f, show that f = 0 a.e. and that

[f = timinf,__[f,

9. Let { f,} be a sequence of measurable functions on R with | f, | < g, for all n,
where g e L' (R?). If { f,} converges to fin measure, prove that |f| < g a.e. and that

{f,} converges to fin L'. In other words, prove that the dominated convergence
theorem holds for convergence in measure.

10. Let { f,}, { g,}, and g be integrable on R, and suppose that f, —" f,
g, —2—>g,lf, 1= g, ae, foralln, and that J-gn - J-g . Prove that fe L' and that

I f,— I f . (Compare with exercise 20 in the Lebesgue Integration problem list).

Bl Let 1 < p < o and define q by the equation1/p +1/q =1. Prove
(a) Young's Inequality. Suppose that 1/p + 1/q =1. Then, for any a, b = 0, we
have ab < a” / p+b?/q, with equality occurring if and only if a”™ =b.
(b) Hoelder’s Inequality. Given that1/p+1/q=1, fe L” (E),and g € L* (E)

[ se|= /1 fe120], e,

(c) Minkowski’s Inequality. Let f, g € L” (E). Then f+ g € L” (E) and
||f + g||p < ||f||p +||g||p . Consequently,

. H is a norm.
p

12. Suppose that m(E) < co.
(@) If 1 = p <q<oo,show that L?(E) c L” (E).
(b) Under the assumptions in part (a), show that | f ”,, < (m(E)"""| ||q In

particular, if E = [0, 1], notice that the L” -norms increase with p; that is,
17, <|£], for1=p<q<e.

18. Given 1 < p < q < oo, show that L” (R) # L (R) by showing that neither
containment holds. That is, construct functions fe L*(R) - L” (R)and g e L” (R) -
L?(R).

14, Given1 <p,q, r<cowithr™'=p™ +q', prove the following generalization of

Hoelder’s inequality: ||fg < ||f||p||g||q whenever fe L’and ge L?.

15. Supply a proof for the following:



(a) Liapounov’s inequality. Given1 < p,q<oandO<a <1, letr=ap + (1—
r ap (I-e)q
@)q. Then |7 <[.A7 7],
(b) Suppose that1 < p<r<q<oo. ThenL”NLYcL".

(c) Forl<sp<r<q<o,L"cL”+L? Thatis,eachfe L" is the sum of a
function in L” and a functionin L.

1
ILetfe L2 ([0, 1]) and jf2 <1.
0
(a) Show that for each t € (0, 1], we have I | f1<Ar.
0

(b) Show that Tim, , ™[I £ 1=0.
0

17. If { f,} converges to fin L”, does {I f, 1"} converge to | f1” in L'? in measure?

18. Given 1 < p < oo, construct f, g € L” (R) such that fg ¢ L” (R). Thus, although

L7 is a vector space and a lattice under the usual pointwise a.e. operations on
functions, it is not typically an algebra of functions.

19. Prove the Riesz-Fisher Theorem for Cauchy sequences in L” . Namely, show
that if { f,} is Cauchy in L, then there is some function fsuch that f, —~— f.

Moreover, { f,} contains a subsequence { f,,, }, which converges to f pointwise a.e.

20. Suppose that { f,}isinL”,1 < p < o0, with ||fn ||p <land f, = f a.e.Provethatf
e L’ and that ||f||p <1.

21. For 1 <p <o anda, b >0, show that a’” +b” < (a+b)"< 2" (a” +b") and that
the reverse inequalities hold when 0 <p <1.

22. Letf, f,eL”,1<p<co,and suppose f, — f pointwise a.e. Show that
f.—f ||p — 0 if and only if ||f, , || f ||p Note that the result also holds if “a.e.” is

replaced by “in measure.”

23. It makes perfect sense to consider the spaces L” for 0 < p <1. In this range, the
expression ||||p no longer defines a norm; nevertheless, L” is a complete metric linear

space. For 0 < p <1, prove that:



(@) L” is a vector space.
(b) The expression d(f, g)= II f —g1” defines a complete, translation-invariant

metricon L”.
(c) Letp™ +q ' =1 (notethat q<0). If 0 < fe L” and if g > 0 satisfies 0 < J-g" <

oo, then Ifg > (pr)llp(qu)llq.
() Iff,gel”, withf,g=0, then |f+g| >|f]| +|¢
@ 1f gL’ then |f+g], <2 (7], +[s],)

p’

24. Let f: E - [-00, co] be measurable and essentially bounded, and let
A =ess.sup ., |f(x)]|.Prove that:
(@ 0<A<oand |f|]<Aae.
(b) f=0a.e. if and only if A =0.
(c) f0<A"<A, thenm{|f|> A’} #0.
Thus, |f | < || f ||w a.e., where || f ||w is the L™ -norm of fand || f ||wis the smallest constant
with this property.

5.1t fe L™, is m{|f] = | £|.} > 02 Is {|f] = ||} # ©? Explain.

26. If f: E —» R is measurable, (everywhere) bounded function, prove that
ess.sup |f| <sup; |f|. Give an example showing that strict inequality can occur.

27.1f f: E = [-c0, 0] is essentially bounded, show that
ess.supl f(x)| = inf{ sup | f(x)l: m(N)= O}_

xeE xe E-N
Moreover, show that this infimum is actually attained; that is, prove that there is a
null set N such that ess.sup , |f|=sup,_, |f].

28/ Letfe C[0,1] and 0 < A < co. If |f(x)| < A ae. x € [0, 1], prove that, in fact,
< A for all x € [0, 1]. Conclude that

sup| f (x)| = ess.sup| f (x)|

0<x<1 0<x<1

Flew. v =17

f()

in this case. In other words, o, 1

29.1f f, g : E = [-00, 00] are essentially bounded, show that f + g is essentially
bounded and that ||f + g||w < ||f||w +||g

_, where ||||w denotes the L~ -norm.



80.1f f, g € L”, show that fg € L"and |f - g|_ <|/f|_|s]. - Conclude that L~is a

normed algebra. Is L~ a normed lattice (under the usual pointwise a.e. ordering)?

81. If E c R“and m(E) < oo, show that, as sets, L (E) c L” (R’), forany 1 < p < o,
and that ||f||p <m(E)""|f||_for any f € L~ (E). In particular, if f € L~ [0, 1], then

71, <1#1, <[f].forany 1 < p < co.
32.If fe L™ (E), where m(E) < co, show that limp_m”f”p = ||f||m

33. Suppose f € L (R), where the measure on R is the usual Lebesgue measure.

Prove that

1! This is immediate when we observe that {|f-g| =€} c{|f-h| =¢/2}U{|h-g| =
€/2}. The set relationship holds, since any x notin {|f-h| =€/2} U{|h-g| = €/2}
satisfies |f(x) -g(X)|= |f(x) -h(x)| + |h(x) - g(x)| <e€/2 + €/2 =e€. Hence, that x
cannot be a member of {|f-g| = €}.

exists and equals || f ||w .

Solutions:

2| It is enough to show that m{|f- g |+ 0} = 0, from which it will follow that |f-g| =0
a.e. and hence that f = g a.e. To accomplish this, fix e > 0 and define E, = {|f- g | = 1/k}.

Then for each n, exercise 1 implies that m(E ) < m{l f, - f|=1/2k} + m{l f, - g| = 1/2k}
and, since f,—— f and f, —— g, we may choose n large enough so that m{l f, - f| =
1/2k} <e 27" and m{l f, - g|=1/2k} <e 27", This shows that m{|f- g| + 0} =

U E,) Zm(E ) < ez 27" =e. Since € is arbitrary, the desired conclusion is

estabhshed

3. By definition, f, + g, —— f +g ifforeverye>0, lim, , m{l f, +g,—f—gl =€} =0.
But by exercise 1,

m{lf, +g,—f—-glzef=m{lf —fl=€/2}+milg, —gl| =€/2}.
And since f, —— f and g, —"— g by hypothesis, we may use the squeeze theorem
to conclude

lim,  m{l f,+g,~f-gl=e=<lim, . (m{lf,—fl=¢/2+mllg, —gl=¢/2})=



4. Convergence in measure is not generally preserved by products. Here is a
counterexample:

Let fn(x):1+1/2n
1+x

g(x) = x’, and where the mode of convergence is uniform. Note that uniform

1

27
X

and g, (x)=x"+1/n.Then f, — f and g, — g, where f(x)z1

convergence is stronger and therefore entails convergence in measure. However, f,g,
does not converge in measure to f g as can be seen by noting that for each € > 0 and

1{ x° 1 1
— +— >€ = oo.
n\1+x? nl+x?

In the counterexample above, notice that the sequence { f, } is uniformly bounded

everyn, m{l f,g, — fg| =€} =m{ x e R:

whereas each function in the sequence { g, } is unbounded on R. One way to enforce the

product rule for convergence in measure is to add the hypothesis that that both
sequences are uniformly bounded outside arbitrarily small sets. Specifically, assume
there is some number A such that lim, ., m{x: | f, (x)| = A} =1lim _,_ m{x:1g, (x)| = A}

o

= 0. Then for any € > 0 we can write
limm{l f, g, —fglzef<limm{l f, g, —gl=¢€/2} + limm{lgll f, — fl=€/2}
< limm{x: | f, (x)| = A} +limm{l g, —g| =€¢/2A} + limm{x: | g, (x)| = A}
+limmf{l f, — f | z€/2A} =0.

We are able to conclude from the squeeze theorem that limm{l f, g, — fg | =€} =0.

9. By definition of convergence in measure, we have | f, | —— 1| f | if and only if for any
€>0, limm{|l £, -1 f | = ¢ =0.Since | £,(x) =1 f()| <1f,(x)— f(x)| for every x, it
follows that {|I f1=1f I| >¢} c{l f,—f|=¢€}and because f,—— f,

imm{|l f, 1-1f| =€ < limm{l f, — f | = ¢} =0.

Thus the assertion of the exercise is true.

6. (a) The statement is true. To show this, recall that f, —=— f if for every e > 0,
there is a measurable set E_ of measure m(E_ ) < e such that f, — f uniformly for all x
¢ E_. On the other hand, f, —— f, if for every € > 0, there is an integer N such that
m{l f, —f | =€} <eforalln=N. Thus, if f, —=— f, wecanfind aset E_,, of measure
m(E_,,) <e/2and an integer N so that | f, (x)— f(x)| <eforallx ¢ E_,, and alln = N.
We then have m{l f, — f | =z ¢} =m(E_,,) <€/2 <¢, which proves that f, —— f .



(b) This statement is also true. Since f, —=— f, we can find for each k a
measurable set E, of measure m(E, ) < 27° such that f, — f uniformly forallx ¢ E, .

Define E = ﬂ UE , - Then m(E) < m( UE L )S z 27" and since j is arbitrary, E must be of
k=j

j=lk=j k=j

measure 0. If x ¢ E, there must be some j for which x ¢ UE , and in particular there is
k=j
some E, , which doesn’t contain x. As f, is uniformly convergent outside of this E  , it

follows that f,(x) = f(x). In other words, f, — f pointwise on E“.

(c) Pointwise convergence does not generally imply convergence in measure.
Consider, for example, f,, g,:R—> R givenby f, =%, .., and g, = %, ..,- Both
functions converge pointwise to 0, but m{l f, | =1} = m([n, n+1])=1and m{l g, | = 1}
m([n, o)) = co. Hence neither f, nor g, converge to 0 in measure.

Notice that the function sequences of the counterexample above are defined on a set of
infinite measure. If, however, f,: E - R are defined on a set E of finite measure (m(E) <

o) and f, — f pointwise a.e., then Egorov’s theorem implies that f, —~— f. By part

(a) of this exercise, almost uniform convergence is stronger that convergence in
measure.

(d) A sequence of functions can converge in measure and fail to converge
pointwise for every x. In order to understand the counterexample below with ease,
imagine the graphs of the f, to be sliding horizontal platforms of vanishing length that

move back and forth over [0, 1]. More precisely, define g , = Xi/;. @y - Wherej, k

are nonnegative integers and 0 < k <j - 1. We wish to enumerate this collection of
ordered pairs so that the sequence of the graphs of g ; ,, plays like the cartoon which is

represented by the figure below:

8.

To achieve this, define



Jtl J

=800 ifzj:lﬁn<Zl and k=n-) 1.
=1 =1 =1

Then f,—"—0, because for any € > 0, there is a j such that 1/j < e and therefore m{{l f, |

j
>ef<1/j<eforall n> Zl . Notice, however that for any x € [0, 1], limsup,_,_ f, (x) =1

I=1

and liminf, ,_ f,(x) =0, and therefore lim, ,_ f, (x) does not exist.

Though f, —— f does not imply pointwise convergence, it is always possible to
produce a subsequence f, ,, which converges almost uniformly to f:

First, construct a strictly increasing sequence of integers n(k) such that m{l f, — /| =
27%} < 27 for all n = n(k). Use these integers n(k) as indices of the subsequence

{ fuw )y and label by E, the set{l f,,, — f 1 = 27" }. Then m(E, ) < 27 and for any € >0,

we can therefore select some number j, for which Z 27" <eand define E_= U E, .

k=j k=j
Clearly, m(E_) <e. Forall x ¢ E_, we must have | f,,,(x)— f(x)| < 27", whenever k > j.
Thus, if 6 >0, | f,,,(x)— f(x)| <¢ for all k = max {j, In(5~")/1n(2) }. Hence, convergence

is uniform outside E_ .

(e) Convergence in L' is stronger than convergence in measure. Recall that
f. —L5fif lim, I | £, — f 1 =0.Given € > 0, Chebyshev’s inequality implies that

m{l £, - f 1 ze}sljlfn—fLTherefore, lim,_ _m{lf —fl=>¢=< limn_mljlfn—fl =
S S
0.

(f) This is false. To see this, simply modify the counterexample in part (d); define
j j+l J

J
f, = jzg(j, o if ZZSn<ZZ and k =n—21. Then f, ——0, because for any € > 0,
I=1 I=1 =1
j
there is a j such that 1/j < € and therefore m{{l f, | =€} <1/j<eforall n> ZZ.
=1

j
However, jl f,1=j forall n=> ZZ and therefore lim, I £, | =o0.
I=1

The statement can be made true with the additional stipulation that the { f, } are

supported on a set E of finite measure and uniformly bounded a.e.:
Let B be an upper bound a.e. of | f, I, n=1, 2, ... From part (d) we know that

convergence in measure implies pointwise convergence via a subsequence. Thus B >
| f 1as well. Fix e > 0 and define E, = {| f, — f | = €}. Select n large enough to insure

m(E ) < eand estimate



[tf,=f1=[1f,=f1+ [1f, - F1<2Bm(E,) + & m(E) <2Be +€ m(E).
E E-E,
Consequently, f, —L 5 f as desired.

7. Observe that since { f, } is Cauchy in measure, we can make the set {x € R*:

| £,(x)= f,,(x)| = 27"} arbitrarily small if we choose large integers m, n. Specifically, let
n(k) be a large enough integer so that whenever n, m = n(k), m{l f, — f,, | = 27} < 27%.
Thus, upon selecting a strictly increasing sequence {n(k)};_, , we obtain the subsequence
{fur ) and define E, ={I f,,.;, = fus, | = 27°}. The choice of the n(k) dictates that m(E, )

< 27 and therefore that Zm(Ek) =]<oo.

k=1

Define f = f,, +Z(fn(k+l) fuwy) and g =l f |+Z| futesry = fuo 1. Then | f | < g, f(x) is

defined, and, by construction, is the pointwise hmlt fx)= hm Fuijey () for all x for

which g(x) converges absolutely. Now if it is the case that g( ) = oo, it must also be true
that x € E, for infinitely many k. But by the Borel-Cantelli lemma (see problem 10 in the

list on measure theory), the set of points in the intersection of infinitely many E, must

have measure 0. That is, if G = {x € R“: g(x) = oo}, then m(G) = 0 and therefore fis the
pointwise limit of { f,,,} forallx e R‘ — G.

To see that f,,, —— f, pick e >0 and observe that {I f — f,,, | =€} c{l f = f,,, | =
27" for all k such that 27**' <e. Also observe that

fn(k) Z(fn(ﬁl) n(J))

which means {I f — f,,, | = 2 k“} cS,, where

Sk = { xeR*: ilfn(jﬂ)(x)_fn(j)(x)lzzk+1 }

Zl fn(]+1) n(]) ’

Furthermore, notice thatS, c U E, , otherwise we would have some x € S, for which
j=k

J

Z' Sy O = [ (01 < ZZ_j =27 a contradiction. Hence m(S, ) < > m(E)) <
ik = x

2741, Putting this all together yields
]l(imm{l f=fun | =€ < ]l(imm(Sk) < ]l(im 27 =0,
Finally, to establish f, —*— f, for any € > 0, choose k large enough so that

m{lf_fn(k)l >¢€/2} <€/2 (1)
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and
m{lfn_fn(k)|26/2}<€/2 (2)
for all n > n(k).
Inequality (1) can be made valid from the earlier result f, ,,—— f, whereas inequality

(2) comes from the hypothesis that { f, } is Cauchy in measure. For all such n and n(k)
we then have (see exercise 1)

m{l f—-f,lzef=m{l f—f,, | =¢/2} +m{l f, - f,,, | =€/2} <e.

8. We start by picking a subsequence { .[ Fuwo Ve Of { .[ f. }., with the property that

lim, .[ fuwy = liminf, j f, . Since f, —— f, it must also be the case that

fuwy —— f and by the discussion in exercise 6 part (d), { f,,, } contains a further
subsequence { f, ,,;, } Which converges to f almost uniformly and therefore a.e. From the
hypothesis that all the f, are nonnegative, the pointwise convergence f,,,, — f easily

implies f = 0 a.e. and by Fatou’s lemma,
timinf, .. [ £, 2 [ £ (1)
However, { .[ fuwuy }1s a subsequence of the convergent sequence {j fuw } and must
therefore go to the same limit. In particular
timinf, .. [ £, =1im, . [ gy =1im, . | £, =liminf,__ [ £, . 9
Combining inequality (1) with the identity chain (2) yields

liminf, . [ £, >]f,

which is the desired conclusion.

9. Suppose that f, —"— f and | f, | < g, for all n, where g € L' (R“). By the argument at
the end of exercise 6 part (d), there exists a subsequence { f, ,, } of { f, } which converges

to fa.u. and hence a.e. In particular, |f| = lim,__ | f,, | <g. Fixe> 0 and define for
each integer N the set E,, = {x e R’: |x| =N, g(x) = N}. Then the sequence

8 n = 8X, increases monotonically to g a.e. and by the monotone convergence

theorem, there must be an integer N large enough so that

[ e=[(e-gw)<e
EN
Now fix k > 0 so that 1/k <eand define F, = {l f, — f | = 1/k}. The hypothesis that

f,—— f allows us to pick n, such that m(F , ) < e whenever n = n,. From our choices

of N, k, and n, we then have

[l =f1=f V=1 ] V=1 )
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E| f.-f1< 2jE g <2¢ 2
1= ri=] V= f 1 S o
..Em' f. — f1<2N m(F,)<2Ne n
.'EMJ f.—f1<1/k) m(E,) <& m(E,) 5

Putting inequalities (1) — (5) together gives the estimate
[1f,—F1=@N+m(E,)+2)e

which shows that the integral is arbitrarily small for all n = n,,. We have thus

demonstrated the desired result.

10. Define for each n and N the set E), = {x e R’: |x| =N, g,(x) <N} and set E, = {x

eR’: |x| =N, g,(x) <N foralln}. Thatis E, = ﬂE v - Several observations are in

n=1
place.
Observation 1: g, —— g, where the g, are nonnegative. As explained at the

end of exercise 6 part (d), there is a subsequence { g, } such that g, ,, — g pointwise

a.e. and therefore 0 < g(x) for almost every x. Furthermore, g(x) < N whenever x € E,, .
Observation 2: The sets E,, are increasing (E, < E,,,) and since the g, are

integrable, the functions are finite for almost every x. Thatis, if U, = {x e R’: g, (x) =

ojand U ={x e R’: g,(x) = oo} for at least one n}, then U = UUn and m(U) = 0. Thus

n=1

the E, must increase to a measurable subset E ¢ R where m(R“ - E) = 0.

Observation 3: By hypothesis, | f,(x) | < g,(x) a.e.and f, —— f . We may
therefore pick subsequences { f,,,} and { g, } such that f,, — f a.e.and g,,, — ga.e.
Therefore g(x)=1lim,__ g, (x) 2lim,__|f,, (x)|=1f(x)]. In particular, since g is
integrable, so must be fandforallxe E,, | f,(x) |[<Nand | f(x) |<N.

Observation 4: For each N

lim, .. [(g,~¢)=0
Ey

This follows from the version of the bounded convergence theorem outlined in exercise
9, in which pointwise convergence a.e. is replaced by convergence in measure. In
particular, since g, —— g, E, is a bounded set, and | g, (x)—g(x)| <2N forallx € E,,

we must have g, — g ——0. Furthermore, using observation 3, we may also conclude
that
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m, . [If,-f1=0
E
Observation 5: By observation 4 and the hypothesis I 8, = I g, it follows that

m,.. [(g,-)=lim,._[(g,~g~lim,_ J(gn—g) 0

Ey

We are now ready to prove the main result by estimating ‘ I f, - j f ‘ = ‘ I f,-f )‘ .

[(r,=1

<j|f f|—j|f f|+j|f —

ﬂf fHI& E
ﬁf ij@fgwafg
flf f|+lj(gn—g)|+2:g

Since g is integrable on R, the integral of g decays to zero out31de a large bounded set.

More precisely, for £ >0 we may pick N large enough so that

Je<y
g JE—
E\ 4
N
Holding this N fixed, we note from observations 4 and 5 that for large n
£
Jif -1
EN
and
£
| Ign —gl=—
Ey

Hence U( fi=f )‘ < g, from which the assertion J- f,— J- f readily follows.

Bl The proofs presented below were borrowed from the Carothers textbook.

(a) Notice thatif p>1and1/p+1/q =1, thenq=p/(p—1) > 1. Additionally,
notice thatq =1 +1/(p—1), from which we have q—1=1/(p—1). Thus, if p—1<1,
taking reciprocals establishes that q—1 > 1. Define functions fand g : [0, ) = R by
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f()=x""and g(y)=y""" =y

and deduce from the preliminary discussion that f and g are inverses and therefore the
graphs y = f (x) and x = g(y) are identical. Without loss of generality p—1 > 1 and the
curve y = f (x) is concave up. The diagram below shows that we may think of ab as the

area of a rectangle with side-lengths a and b and of a” / p+b“/q as the sum of areas
between y = f (x) and the x-axis and between x = g(y) and the y-axis.

\

a

a b P q
In other words, ab < .[ x"dx + .[ ylay =44 LA , where equality holds if and only if the
0 0 p q

corner (a, b) lies on the curve y = f (x). That is, if and only if b=a""".

(b) That J.E /g ‘ < JE| /8 lis clear from the basic properties of Lebesgue

integration. To establish JE g notice that if either || f ||p or ||g||q is 0, the

function |fg|= 0 a.e. and there is nothing to prove. So assume || f ||p #0and #0and
| fg |
consider J.Em . Letting a = and b= and applying Young's inequality,

|| || || ||

we obtain, by monotonicity of Lebesgue integration,
[ Cifel I|f|PJr J-Igl” LAy, sl
T, 2ol ol P, el

Hoelder’s Inequality is obtained upon multiplying the left-hand-side and the right-hand
-side of the inequality by || f ||p||g||q .
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(c) First notice that if f, g € L” (E), then
[1r+gr <] @maxiifi gy’ szP(jE| fIr+fig 7).
Thus f+geL”(E).
To prove Minkowski’s inequality, observe that | f + g I”" € L (E), where q is defined by
the equation1/p +1/q =1. Infact, since q = p/(p—1),

Hlf+g|p_luq :(IE|f+gI”)(p_l)/p =||f+g||£_1.
Now,
||f+g||z:jE|f+g|f’=jE|f+g|-|f+g|"-1sjE|f|-|f+g|"—‘+L|g|-|f+g|"—‘.

Applying Hoelder’s inequality to J.EI fllf+gl”" and IEI gl-lf+gl"" we get

If + by <L 1f + sl +lel bf + el =01, +lel, M+l
Dividing the last inequality by | f + g||i N gives the desired statement.

12. (a)LetfeL?(E)and define A={xeE: |f |<1}and B={x e E: |f |=1}. Then A
and B are disjointand E= AU B.Sincel<p<gq, | fI” <lonAand | fI”<|f1? onB.
We thus have

[1rr=[irr+fipr<fi+[1fe<[i+]1f17=mE)+|f] <o
and hence fe L” (E).

(b) Assumel <p<q<oandleta=q/pandb=q/(q—p). Thenl/a+1/b=1
and therefore, by Hoelder’s inequality,

”f”Z — J.E| f |P:J.E(1), | f |? < (IE(l)q/(q—p))‘_l’/q (J‘E(I f Ip)q/p)P/q _ (m(E))l_p/q”f”:'
Upon taking the right and left-hand-side of the inequality to the power 1/p, we obtain
the desired statement.

13. Define

x P x 21 x M if xe (0, 1]
f(x):{ 0 if x<I and g(x):{ 0 if xe, 1]

oo

Then J-I fx)1’= jx‘ldx =oo while 1 < p < q < oo implies that
1

J-If(x)l"=Tx“”de= P_ <. Hence fe L!(R)-L" (R).
1 q—p

1 1
On the other hand, J.I g(x) 7= J.x‘ldx = oo while J.I g(x)1”= jx"’/"dx =9 <o Hence g
0 0 q—p
eL’(R)-L*(R).
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14. The equationr'=p~' +q~' is equivalent to 1= , which satisfies

+
(p/r) (q/r)
Hoelder’s condition. Thus, II fel'< (II frwm )r/p( | g |/ )”q =

sides of the inequality to the power 1/r procures the desired result.

,- Raising both

15. (a)Givenr=ap + (1—a)q, we may write

=[irr=fipm i,
The numbersa=1/a and b =1/(1—«) are Hoelder’s conjugates (1/a+1/b=a +(1—«)
= 1) and we may therefore apply Hoelder’s inequality to obtain

Jroepeen< (e f Qe = Qo)™ Qe =

This validates Liapunov’s inequality.

(b) Letl<p<r<q<wandfeL”NL? Thenforsomea e (0,1),r=ap+ (1—
@)q. By Liapunov’s inequality, we then have

<L <

Thusfe L" and the claim L” N L*c L" is therefore confirmed to be true.

(c) We will show that for every measurable subset ECc R and 1 <p<r<q<oo,

the relationship L" (E) c L” (E) + L (E) holds. So, for f € L" (E), define
A={xeE: |f(x)|=z1}and B={x € E: |f(x)|<1}. Then A and B are disjoint measurable
subsets of E with A U B = E. Hence, f = fy, + fx; = f, + f, and it only remains to be

shown that f,e L’ (E) and f,e L?(E). We have
P P r r o
Llfll —Llfl sjA|f| sjE|f| <oo,
where we use the fact that | f(x)1” <1 f(x)|" for all x € A. Therefore the assertion f, €
L7 (E) is valid. The estimation

jE|f2|q=jB|f|quB|f|’sjE|f|r<oo

shows that the corresponding assertion for f, is true as well.

t 1
I (a) By letting g = |, ,;, we can write the integral I lflas II f-g!l. Applying
0 0

Hoelder’s inequality with1/p =1/q =2, we obtain

frars([r) (Te] <D -
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1 1 1/2
Since J. f? <1, we must also have (J. f zj = || f || , <1. This completes the proof of (a).
0

0

(b) Fix t € (0, 1] and observe that by the Hoelder Inequality,
; ; 1/2 ; 1/2 ; 172
j|f|s[j|f|2] “1] :[Ilflzj t"? . Hence
0 0 0 0
; ; 172
osz—”zjlﬂs“lﬂzJ :
0 0

An easy application of the Lebesgue Monotone Convergence Theorem shows that

lim,_, I f?=0. Therefore
0

/ . 1/2
OSIimHOr‘“jlfls[limHo IIleJ =0,
0 0

which establishes that lim,_, ™" Zjl f1=0.
0

17| Recall that f,—X— f if (j| forr)’ =

fo— f||p — 0 as n — co. The expression

f,—=f ||p may be vanishing without the assumption that the f, € L”. Consequently, it

would be best to analyze the behavior of limn_mHI 1 =fr Hl =lim, HI 1P =1fr ‘in

two separate cases.
Case 1: Suppose { f,} c L” (E). Then, since || fi=f ”,, — 0, we can deduce from

fu|l, <e=.Hence fe L (E) as well.

Moreover, since ||||p is a metric, it follows that I|| f. ||p —|| f ||p | <|f, —f ||p —0.In
particular, (jE| s (jE| 17" and therefore [[1f, 17— [ 1717 asn > co. Notice

observation to use, define A, ={x e E: I f,(x)I"= | f(x)I"}and B, ={x € E: | f, (x)1”<

| f(x)1”}. Clearly E is the disjoint union of A, and B, and we may write

[hrr=rpr|=[ (rvr=tpv)e] (e -igv)

But we know from Minkowski’s inequality that

Minkowski’s inequality that || f ||p < || f=r

+
P

that the inequality | fu—f ||p holds on any subset F c E. To put this
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Lo S

L’ (A,)

(o) e ose o)

And since

7= Flia, <1

inf(115.0) (157" )=

This limit is of the form lim,_,_(x, —y,) =0, where the hypothesis that f € L” (E) implies

o=t = f

LP(E)%O,

the limit

that the y , and therefore the y, are bounded and since the function g(u) =u" is
uniformly continuous over any bounded set, we may further conclude that
lim, . (x?—y?)=0.Thatis

e (
im([ (£, 1P =1f1")=0
n—oo JA, ’
The same argument shows that

im([ (£ =1 £ 17)=0

n—o0 IB,
We are thus lead to the conclusion that f, —~— f implies | f, I” —L f I” under the
condition of membership in L”. Since L' convergence is stronger than convergence in
measure, note that we also have | f, I” ——1 fI”.
Case 2: Suppose that { f,} is not a sequence of elementsin L”. Then f¢ L”, for
otherwise we would have

Lll, <l =21, #1171, <

by Minkowski’s inequality. The example below is the idea of Joseph Gunther. It shows
that we may not generally expect | f, |” —L 51 £1” to follow from the mere hypothesis
that

f.=f ||p — 0. In other words, the assumption { f,} c L” is necessary. The essence
behind Joseph's idea is to define f, = f + g, for some nonnegative sequence of
£ =1, =[g.], =0, while |(£,)* =(£)], = [ (e} +28,1) >

Therefore, consider the space L.* (R) and define

functions g, so that

&n

P xe O, 1] x xe (/n, 1]
f(x)={ ’ and  f,(x)={x"+x"° xe(0, 1/n]

0 otherwise .
0 otherwise

Then
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1/n

j|fn—f|2= _[x_mdx:nl%—)O.
0

But
1/n

J((fn)l _(f)z): J‘((x—zm 4 xR )dx > l]‘nx—l o

0
and | f, I’ does not converge to | f I’ as we set out to show.

18. Consider the functions
—1/G3p) ~2/(3p)
f(x):{x xe .11 g(x):{x xe (0, 1]

0 otherwise 0 otherwise
1 1

Then II f1r= jx‘”%lx =3/2 and II gl’ = Ix‘2/3dx = 3. In particular, fand g are elements
0

0

1
of L” (R). However, j lf-gl"= J.x_ldx = oo and therefore the function fg ¢ L” (R).
0

19. Let { f,} be Cauchy in L” . Then for every € > 0 there is some N such that

fo=1all, <
€ whenever m, n > N. We may therefore pick a subsequence { f, ,,} of { f,} with the

property that | f, ..., — f"<’<>HP < 27" and define

=l +Z(fn(j+1> —f,,(,-)) and &= 11, |+Z| fn(j+1> _fn(j) .
j=1 j=1
Also observe that
k—1
Jowor = Loy ¥ Z (facion = Faii)
j=1

Then |f | < g and by Minkowski’s inequality,
Hg”” = f"(l)Hp +Z;4 Facisn _fn(j)Hp < fn(an +Z;2_j <oo
Jj= =

Hence g < « a.e. and therefore the series fis absolutely convergent for almost every x.

In particular, f,,, — f pointwise a.e. To show that f, —2 5 f as well, simply apply

Minkowski’s inequality to obtain the estimate

Hf—fnUc)Hp - g(fnum_fn(j)) Si

J=k

— —-J
Fusn = Fun|, € 2227,
p J=k

which shows that H f- fn(k)Hpvanishes as k - oo.
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Finally, given € > 0, select N, so that Hf - fn(k)H <e/2forallk =N, N, so that
p

f, = 1,| <e/2forallm,n=N, and define N = max {N,, N, }. Then for allk, n = N,
p SH‘f—fn(k)Hp +fuw — L

Therefore, we have demonstrated that L ” is complete.

<€/2+¢€/2 = e. This shows that f, —~— f.

p

we have |f - f,

20. This is a simple application of Fatou’s lemma: Since || f. ”,, <1, it follows that

II f. I”=||fn||z <1 and since f, — f a.e., we must have | f, I” =l f |’ a.e. and therefore,

by Fatou’s lemma,

jlflf’snminfjlfn I <1.

n—oo

This estimate shows at once that fe L” and that || f ||p <lI.

21. Observe that a” +b” < (a+b)” < 2" (a” +b”) if and only if it is true that

(a+b)" <277, where the last inequality may be expressed as 1< a+bla)” <!

a’” +b” 1+(b/a)?

upon dividing the numerator and denominator of the middle term by a” . Similarly, the
(1+bla)?
1+(bla)”

1<

reverse inequality holds if and only if 12> > 2" holds. Without loss of

p
generality, a = b and we are therefore lead to consider the function ¢(x) = (i + X?D ,
+x

where 0 < x < 1. This function is continuous for all 0 < x <1 and differentiable in the
p+x)""A-x"")

(14 x")? '
Case 1 (1 < p < o0): In this situation, ¢'(x) >0 and therefore ¢(x)is increasing,

interval (0, 1) with derivative ¢'(x) =

with minimum ¢(0) =1 and maximum ¢(1) =2”"". Thus 1< @(b/a) <2”"', which proves
that a” +b” < (a+b)"< 2" (a’ +b").

Case 2 (0 < p <1): Here ¢'(x) <0 and therefore ¢(x) is decreasing, with minimum
@(1) =2"" and maximum ¢(0) =1. Thus 27" <@(b/a) <1, which proves that a” +b” >
(a+b)’=2""(a” +b").

22. One direction is easy. Suppose

£l =11,
theorem that ||fn ||p - ||f||p

fi—=f ||p — 0. Then, since p = 1, the p-norm defines a

=<

f.—f ||p — 0. From this, it follows by the squeeze

metric and we have ‘
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£, fo=tl =1t -r1r <
[277( £, 17 +1£17). Define functions k, =1 f, - f1”, k=0, h, =2"( £, 1" +1£1”), and
h=2"1f17. Then the hypothesis f, — f a.e. implies that k, = k a.e.and h, = h a.e.
L, %”f ,we also have J-hn —>jh. The

statement in exercise 21 of the Lebesgue Integration problem list then implies that
jkn - I k=0.In particular, |f, —f ||i — 0 and it follows that

Now assume , || f ||p holds. From exercise 21, we see that

Furthermore, |k, | < h, for all n and since

f. —f||p — 0, once the p-

th root of the expression is taken.

Note that a similar argument holds for convergence in measure. The first direction of
the above proof still holds. For the other direction, appeal to the statement in exercise 10
in this problem list.

23. (a) Note that L” (E) is a subset of the set of complex valued functions on E, which
clearly is a vector space. It therefore suffices to prove that L” (E) is a subspace. To that
end, suppose f, g € L” (E) and «, 8 are complex scalars. Since 0 < p <1, the expression

HP defines a metric on C, consequently, we have

[tof + Ber<ial” [IF1r+1 81 [Ig1 <eo,

which shows that L is closed under function addition and scalar multiplication.

(b) It is easily seen that the expression d(f, g)= .[ | f — g1” is nonnegative with
d(f, g)=0 if and only if f= g a.e. It is also easily seen that d(f, g)=d(g, f).Triangle

inequality follows from the fact that the restriction 0 < p <1 generates the metric |{" on
C. Monotonicity and additivity of the Lebesgue integral then implies

j|f—g|f’ sj(lf—w +|h—g|f')sj|f—h|f’+j|h—glp.
Thus the function d: L” x L” — [0, o) defines a metric on L”. The fact that d is
translation invariant follows from elementary properties of the integral. Completeness
under the metric d can be established by repeating the proof of the Riesz-Fisher
theorem presented in exercise 19, where the norm ””,, in the proof must be replaced by

the metric d.

(c) The equation p™' +q~' =1 determines thatq™' = (p—1) p ', whichisa
negative number, because 0 < p < 1. Thus the assumption g = 0 and 0 < .[ g% < oo must
imply g > 0 a.e. Define @ = p~' and determine 8 by the equation @™ + B~ = 1. Since 0 <
p <1, @ must be greater than 1 and consequently a and 8 are Hoelder conjugates. In
particular, 37" = 1—p and therefore 8 = (1—p) ' . We can write

If" =I(f"g")g“’ =I(fg)”g"’.
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Applying Hoelder’s inequality, we get

[rr =g <[l ¥V “[leP)” = re) (o)

Taking p-th roots on both sides of the inequality gives
)" <(r)fe)”

Finally, multiplying both sides by (I g’ )q finishes the proof of the reverse Hoelder

inequality.

(d) Suppose f, g € L”, with f, g = 0. We will derive the reverse Minkowski
inequality with help of the reverse Hoelder inequality obtained in part (c). Proceeding
through the steps of the Minkowski inequality proof in exercise 11, we obtain

[F+ell =[(F+o" =[fr+"" +[a(f+a)"".
Define q = p/(p—1). Then
[+t =[(r+g) <o
If J-( f+8)" =0,f+g=0a.e. and therefore, since f and g are nonnegative, we must have

f=g =0, in which case the proof of the reverse Minkowski inequality is trivial. Hence,
assume without loss of generality that

O<I(f+g)” <oo,
Then the hypothesis of the reverse Hoelder inequality of part (c) holds and we have
7 +8l” = [+ 0 2, [ +07) +lel, [or+0),
where 1/q = (p—1)/p. In particular,
b7 +sll; = [ +007 2 s, +lel, M+l

which simplifies to the desired result, once both sides of the inequality are divided by
-1
I+l

(e) Letf, g L” (E) , where 0 < p <1. We have established in part (b) that
d(f, g)= I | f+g1” is a metric. Consequently,

|F+sll =d(f, ey<d(f, O+d(g, O=[£1"+1g1")< [2max{if 1", 151},

Taking the p-th roots of the leftmost and rightmost expressions, we obtain

|7 +gl, <2 ([maxtr 17, 1g1m)"". )
Define A={x € E: | f(x)I"> 1 g(x)I”Yand B={x € E: | f(x)I”< | g(x)I”}. Then
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fmaxtirre1ga)” = rre )"+ ([ 1er)” <), +[el,. @)

Putting (1) and (2) together shows the desired inequality.

24| First, let us recall the definitions: A function f: E — C is said to be essentially
bounded, if there exists a real number B so that |f| < B a.e. Thatis, m{x € E: |f(x)|> B}
= 0. If U is the collection of all essential bounds of fover E, thatis, if U={M € R: m{x €
E: |f(x)|> M} = 0}, then the essential supremum is defined by ess.sup ., |f(x)| =inf U.
Notice that if m(E) =0, U = R and inf U = -c0. This is not an interesting case from the
perspective of Lebesgue measure and integration theory, since the behavior of functions
on sets of measure zero has no effect on the integral and can be ignored. We are
therefore free to assume m(E) > 0. Throughout this problem, A := inf U.

(a) By hypothesis, fis essentially bounded, which means that U # () and therefore
A< . IfK<0, {xeE: |f(x)|>K}=Eand m{x € E: |f(x)|> K} =m(E) > 0. Hence U
contains no negative numbers. In particular, A = 0. Finally, notice that A is always a
member of U; the set {x € E: |f(x)|> A} can be expressed as U ,,{x € E: |f(x)|= A +

1/n}, where m{x € E: |f(x)|= A +1/n} =0 (because, by definition of infimum, the
interval (A, A +1/(2n)] harbors an element of U). We may therefore conclude that |f| <
Aae.

(b) Suppose f=0a.e. Then m{x € E: |f(x)|>0} =0and 0 € U. Since, by part (a), U
contains no negative elements, we must have 0 = A.
On the other hand, if A =0, part (a) implies A € U and we have 0 = m{x € E: |f(x) | > A}
=mix € E: |f(x)|> 0}, which is the same as saying f =0 a.e.

(c) If A’ < A, by the definition of infimum, A" € U and therefore m{x € E: |f(x)|>
A’} #0.

Part (a) of the exercise shows that | f | < || f ||m a.e., where || f ||m = A, while part (c) verifies
that || f ||w = A is the smallest number with this property.

25. Any constant function on E satisfies { | f| = || f ||m} = E. Therefore, m{ | f| = || f ||m} >0is
possible. However, examples where { | f| = || f ||m} = () are abound. Consider, for instance,

f:R - Rdefined by f(x)=tan"'(x). Then ess.sup |f| =sup |f| =n/2 asis easily
verified. Since this function never attains its least-upper-bound on R , it follows that

HA=1r]r=

26. LetU={M e Rim{xeE: |[f(x)|>M}=0}and set A=inf U, B—supE | f|. Then the

hypothesis that fis everywhere bounded by B may be phrased as {x € E: |f(x) |> B} = 0.
Hence B € U and therefore A = inf U < B.
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The following example shows that ess.sup , |f|<sup |f| can happen:
Define f: R - R by
1 x irrational
f=1,
Then m{x € R: |f(x) | > 1} = m{Q} = 0, which shows that ess.sup , | f| < 1. However, it is
clear that sup, |f| =

x rational

27. Define U= {M e R: m{x € E: |f(x)|>M}=0},V = {sup L f(x) m(N)=0},A=

xeE-N

inf U, and B =inf V. If M € V, there is some 0-measure set N, such that M = sup | f(x)]|

xeE-N
and therefore {x € E: |f(x) |> M} c N, which means that M € U. We conclude that V c
U. Consequently, A < B.
To show that A =B, let £>0 andset N(¢)={x e E: |[f(x)|> A+ £}. Thenm(N(¢)) =

(€
because A + £ € U. The number sup | f(x)| must belong in the interval [A, A + & ]

xeE-N(g)
In particular, B € [A, A + £] and therefore, as ¢ is arbitrary, A = B.
Finally, to show that ess.sup , |f|=sup,_, |f| for some set N of measure 0, recall that A

=ess.sup, |f| and that A € U. Let K= {x € E: |f(x)|> A}. Then m(K) = 0 and
sup . |fl<A.Butsup,_ |f| €V and therefore B < sup ,_ |f|. By our earlier

observation, A = B and the proof is complete.

28. The fact that fis a continuous function tells us that sets of the form
{x [0, 1]: |f(x)|> A} are open. Hence, if |f(x)| <Aae,then{xe[0, 1]: |f(x)|> A}is

an open set of measure 0 and can only be the empty set (. Thus, i

means | f (x)| < A for all x. Moreover, if N is any subset of [0, 1] of measure 0,
sup|f (x) = .sup | (x)
0<x<1 [0, 1I-~
because {x € [0, 1]: |f(x)|> .sup |f (x)| } € N is an open subset of a set of measure 0 and
[0, 1]-N
must therefore be the empty set. By the previous exercise, ess.sup| f (x)| = .sup | f (x)| for
0<x<1 [0, 1}-N
an appropriately chosen set of measure 0 N. This completes the proof that

sup| f (x)| = ess sup| f (x)| in the case where f € C[0, 1].

0<x<1

29, As has been shown in an earlier exercise, | f | < || f || ae.and I gl < ||g|| a.e. In
particular, the sets F= {x € E: |f(x)|> |f[_.}and G={x € E: |g (x)|> |g|_} are of
measure 0. Since theset H={x e E: |f(x)| + |g(x)| > ||f|| + ||g|| }is a subset of F U G,
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which is itself a set of measure 0, it follows that || f ||m + || g||m is an essential upper bound

of |f| +|g| and, therefore, of |f + g|. Thus, f+g||m S||f||m +||g

the least essential upper bound.

_, because ||f + g||mis

30. Sincef,ge L™, | f1 < ||f||w ae.and gl < ||g||w a.e. In particular, the sets
F={xeE: [f(x)]|> ||f||m} andG={xeE: |g(x)|> ||g||m} are of measure 0 and therefore
| fgl < || f ||m|| g||m in the compliment of F U G. Now F U G is a set of measure 0, which

means that || f ||m||g||mis an essential upper bound of | fg |. Hence || f- g||m < || f |

el

because || f- g||m is the least essential upper bound of | fg I.

L"is not only a normed algebra, but is also a normed lattice, because L™ contains the
functions min{l f |, | g I} and max{l f I, | g I} whenever f, g € L™ . Notice also that
||f||m < ||g||w whenever | f1 < lgl a.e.

81l Let fe L~ (E), where m(E) < co. Then | f|_ =ess.sup,., | f(x)| = sup, ., | f(2)],

where N is some subset of E of measure 0 (see exercise 27). Therefore, we have
Il =frrv =l e
<[, ey 1SV =] f]] =mE-W)|s].

=m(E)|f
which, after taking the p-th root, gives the inequality | /| <m(E)""|f]_.

p
o’

We have thus shown that fe L” (R?), from whence the set inclusion L* (E) c L” (R“)
must follow. Combining this result with the one obtained in exercise 12, we conclude
that if fe L™ [0, 1], then ||f||l < ||f||p < ||f||mfor any 1 <p < co.

32. Let E ¢ R”be a measurable subset of finite measure and let f € L~ (E). By the result
we verified in the previous exercise, we know that || f ||p <m(E)"'? || f ||m . To get a lower

estimate for || f

L define the set H(¢) = {|f| > ||f||m — £ } and note that, according to

exercise 24, m(H(&)) > 0. By the monotonicity of the integral

i) (sl -e)s(J, ") =l

(&)
Hence,

m(H )" (1] ~e)<|l, smE" AL o
Observe that lim ,_, m(H @)"? =lim s M(E )7 =1. Therefore, taking lim sup of (1), we

obtain
|£].. - & <timsup, | f], <|f]..
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while taking lim inf of (1) yields
7] —& <timinf__|£], <[£]..
The fact that £ > 0 is arbitrary implies limsup |/ ||p = liminf,__|f ||p =|f|. . Hence

m p_m” f ||p = limsup p_m” f | L= which is the desired result.

33. Perhaps the simplest approach is to utilize abstract integration theory by defining a
suitable measure function that would make R into a measure space of finite measure.
With this measure function in place, the problem can be reduced to the one solved in
exercise 32 above. Something along the following guidelines was suggested by Prof.
Zakeri:
Let M(R) be the collection of all Lebesgue measurable subsets of R. Define
w: M(R) - [0, oo] by u(E) = m(tan™" (E)). Then u is a measure function and u(R) = 7 < co.
We then have

1/n

= 1111{ frer dy] = lim|

Where L" (1) is the space of all L" -integrable functions on R with respect to the measure
function u. Repeating the argument in exercise 31 then yields

The problem can also be solved without relying on abstract integration. Observe that

im

since f is essentially bounded, |f| < || f || a.e. Therefore,

1/n 1/n
" I n
P | lpes) =Wl ).

Now, to obtain a lower estimate, fix € >0 and define for eachntheset H, (¢) =

| f (01 . . . . .
x€[-In(n), In(n)]: || f || . Then the monotonicity of the integral implies
iex?

1. -e).

n 1/n 1/n
i st 2[ J QIme—s)”de =m(H, )"

Thus,
1/n

dx <z'"

m(H,€)" (], - )<

fl. ).

If we can show that lim,__ m(H (¢))"" =1, it will follow that
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n—oo

1/n
e dx] 1Al

1+x
J <| ...
And, as ¢ is arbitrary, we will then have

1/n 1/n
(@l | £
1 f| | —— =1 —_— =
Hr‘zILloEl [i 1+_x2 dx lrnn_i:lp .I[ 1+ x2 dx n—)oo dx ||f||°° ’

We now demonstrate that lim,__m(H,(€))""" =1 forall ¢ < ||f||w (if ||f||w =0, there is

nothing to prove). We will do this by appealing to the squeeze theorem. To that end,
notice that

||f||m—8 < limsup[

and that

n—oo0

If].—€ < liminf[

m(H ,(e)"" < m[—In(n), In(n)]"" = (21n(n))"" (3).

To obtain the lower bound expression, define for each integer n the set K, (¢) =

@
4/1+[In(n)]®

lim, _ 4/1+[In(n)]* =1the sets K, (&) are increasing to the set K (&) =
{x € [~In(n), In(n)]: |f(x)| > ||f||w — 6‘}, which has measure m(K (&)) > 0 because ||f||w —&
is smaller than the least essential upper bound. Furthermore, the inequality

SOl O g (e

Y1+x>  4f1+[In(m)]?
easily implies K, (£) c H, (&). Fix N to be so large that %/1+[In(n)]* (“f” - €)< ||f|| for
alln=N.Then K, (¢) cK, (&) foralln = N and m(K, (£)) > 0. In particular,

{xe [-In(n), In(n)]: || || .5} and observe that since

m(K, (&))" <m(H,(€)"" ;n=N (4).
Combining (3) and (4) we get
m(K , ()" <m(H,(€)"" <(2In(n))"" (5).

Taking limit as n — oo of (5) shows that lim, ,_ m(H,(£))""" =1 and the proof is complete.



